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Efficient computation of genotype probabilities for loci with many alleles:
II. Iterative method for large, complex pedigrees

R. M. Thallman1, G. L. Bennett, J. W. Keele, and S. M. Kappes

USDA, ARS, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, NE 68933-0166

ABSTRACT: An algorithm for computing genotype
probabilities for marker loci with many alleles in large,
complex pedigrees with missing marker data is pre-
sented. The algorithm can also be used to calculate
grandparental origin probabilities, which summarize
the segregation pattern and are useful for mapping
quantitative trait loci. The algorithm is iterative and
is based on peeling on alleles instead of the traditional
peeling on genotypes. This makes the algorithm more
computationally efficient for loci with many alleles. The
algorithm is approximate in pedigrees that contain
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Introduction

Marker-assisted selection (MAS) in livestock popula-
tions will be more useful if it can be applied to multigen-
eration populations with complex structures. It is likely
that marker data will be unavailable for many of the
individuals in the pedigree.

The method of peeling (Elston and Stewart, 1971;
Fernando et al., 1993) can be used to compute genotype
probabilities recursively in pedigrees that do not con-
tain loops. An iterative algorithm has been applied to
the peeling formulas (iterative peeling) to compute ap-
proximate genotype probabilities in large, looped live-
stock pedigrees for loci with two alleles (van Arendonk
et al., 1989; Kerr and Kinghorn, 1996; Wang et al.,
1996). However, the computations required are propor-
tional to the number of alleles raised to the sixth or
eighth power, depending on pedigree structure.

Thallman et al. (2001) presented an algorithm, re-
ferred to as allelic peeling, that uses a different set of
recursive formulas that are much less sensitive to the
number of alleles and is thus better suited for use with
marker loci with many alleles. However, the recursive
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loops, including loops generated by full sibs. The algo-
rithm has no restrictions on pedigree structure or miss-
ing marker phenotypes, although together those factors
affect the degree of approximation. In livestock pedi-
grees with dense marker data, the degree of approxima-
tion may be minimal. The algorithm can be used with
an incomplete penetrance model for marker loci. Thus,
it takes into account the possibility of marker scoring
errors and helps to identify them. The algorithm pro-
vides a computationally feasible method to analyze ge-
netic marker data in large, complex livestock pedigrees.

algorithm used is restricted to simple pedigrees with-
out loops.

The objective of this research was to extend the
method of Thallman et al. (2001) to make it feasible for
use with marker loci in large, looped livestock pedi-
grees. This was accomplished by applying the iterative
peeling approach (van Arendonk et al., 1989; Kerr and
Kinghorn, 1996; Wang et al., 1996) to the recursive
formulas for allelic peeling and using a genetic model
that accounts for errors in marker data. An additional
objective is the summarization of segregation informa-
tion in a form that can be used directly in QTL analysis
or linkage analysis. The work reported here is a step
in the development of an algorithm to analyze multiple
linked loci simultaneously.

Materials and Methods

Definitions

The notation and recursive formulas for allelic peel-
ing were defined and discussed in detail by Thallman
et al. (2001) and will be used and extended in this paper.
Parental prior distributions and progeny likelihoods
are properties of parent-offspring pairs that are re-
ferred to as meioses and are labeled as separate entities
(corresponding to the arrows) in the pedigree. For exam-
ple, the meiosis from parent i to its offspring k is re-
ferred to as meiosis ki. The locus to be analyzed is
assumed to be a marker locus with A alleles.
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The scaled progeny likelihood of meiosis id, L(id), is proportional to the likelihood of phenotypes connected to
a dam, d, through her progeny, i, conditional on the allele transmitted from d to i. It is stored in a column vector
of length A and is calculated as

L(id) = cL(id)−1 {M(i) ° Π°
t�progeny(i)

[0.5 � L(ti) � 1′ + 0.5 � 1 � L(ti)′]} � P(is) [1]

where

cL(id) = �′ � {M(i) ° Π°
t�progeny(i)

[0.5 � L(ti) � 1′ + 0.5 � 1 � L(ti)′]} � P(is)

The terms M(i), P(is), and � are the penetrance function, the parental prior distribution from i’s sire to i, and
the population allele frequency distribution, respectively, and are defined subsequently and in Thallman et al.
(2001). The operator � represents standard matrix or scalar multiplication, and the operator ° represents ele-
mentwise multiplication of matrices. The multiple product is elementwise over each of the progeny of i and is
eliminated from the formula if i has no progeny. The operator ′ indicates matrix transposition. The constant, 1,
is a column vector of length A filled with ones. The scalar, cL(id), is a scaling factor.

The scaled progeny likelihood of the paternal meiosis from a sire s to its progeny i, L(is), is defined similarly
and is also stored in a column vector of length A, but is calculated as

L(is) = cL(is)−1 {M(i) ° Π°
t�progeny(i)

[0.5 � L(ti) � 1′ + 0.5 � 1 � L(ti)′]}′ � P(id) [2]

where

cL(is) = �′ � {M(i) ° Π°
t�progeny(i)

[0.5 � L(ti) � 1′ + 0.5 � 1 � L(ti)′]}′ � P(id)

the difference relative to L(id) being the transposition of the expression in braces.
The parental prior distribution of meiosis ki, P(ki), is a column vector of length A with elements containing

the probability of the allele (aki) transmitted from i to its progeny, k, conditional on phenotypes connected to k
through its parent, i. It is calculated in a form that is slightly modified from Thallman et al. (2001) to facilitate
inferences about segregation:

P(ki) = P0(ki) + P1(ki) [3]

where

P0(ki) = cP(ki)−1 � 0.5 � P(id) ° ({M(i) ° Π°
t�progeny(i)

t≠k

[0.5 � L(ti) � 1′ + 0.5 � 1 � L(ti)′]} � P(is))

P1(ki) = cP(ki)−1 � 0.5 � P(is) ° ({M(i) ° Π°
t�progeny(i)

t≠k

[0.5 � L(ti) � 1′ + 0.5 � 1 � L(ti)′]} � P(id))

cP(ki) = ∑[0.5 � P(id) ° ({ M(i) ° Π°
t�progeny(i)

t≠k

[0.5 � L(ti) � 1′ + 0.5 � 1 � L(ti)′]} � P(is))

+ 0.5 � P(is) ° ({ M(i) ° Π°
t�progeny(i)

t≠k

[0.5 � L(ti) � 1′ + 0.5 � 1 � L(ti)′]} ′ � P(id))]

and the summation in the scaling factor, cP(ki), is over the elements of the vector.
The genotype distribution of individual i, G(i), is an A × A matrix with elements that contain the probabilities

of the possible genotypes of i conditional on all marker phenotypes in the pedigree. It is calculated as
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G(i) = cG(i)−1 [P(id) � P(is)′] ° {M(i) ° Π°
t�progeny(i)

[0.5 � L(ti) � 1′ + 0.5 � 1 � L(ti)′]} [4]

where

cG(i) = ∑([P(id) � P(is)′] ° {M(i) ° Π°
t�progeny(i)

[0.5 � L(ti) � 1′ + 0.5 � 1 � L(ti)′]})

and the summation in the scaling factor, cG(i), is over the elements of the matrix. The rows and columns of G(i)
correspond to the allele i inherited from its dam and sire, respectively. Thus, G(i) is the distribution of ordered
genotypes that specify which allele was inherited from each parent. An unordered genotype specifies which two
alleles an individual possesses but does not indicate from which parent each allele was inherited.

Livestock pedigrees often contain loops. A loop occurs
when an individual can be connected to itself through
two different parents and(or) progeny. Figure 1 illus-
trates several different types of loops, each of which
occurs commonly in livestock pedigrees. As discussed
by Thallman et al. (2001), Eq. [1] to [4] depend on the
assumption that the phenotypes connected to an indi-
vidual through each of its parents and progeny form
disjoint subsets of the pedigree and are, therefore, inde-
pendent conditional on the genotype of the individual.
If the individual is part of a loop, then the subsets are
not disjoint and therefore may not be independent.

Grandparental Origin Probabilities

In QTL mapping and MAS, genetic markers are used
to make inferences about the segregation of QTL alleles
through the pedigree. In designed resource families
with complete marker data, it is typical for these infer-
ences to take the form of classification (following the
rules of Mendelian inheritance) of parent-offspring
pairs as either fully informative (inferred unambigu-
ously) or completely uninformative. However, in com-
plex pedigrees with incomplete marker data, many of
the parent-offspring pairs are partially informative
(one allele is more likely to have been inherited than
the other, but neither can be inferred unambiguously).
This situation arises when there is uncertainty about
the genotype of an individual. Therefore, a probabilistic
inference about segregation is useful for QTL mapping
with incomplete marker data.

These inferences can take the form of grandparental
origin (GPO) probabilities. Grandparental origin is de-

Figure 1. Examples of several types of pedigree loops. (a) An inbreeding loop caused by related parents. (b) A
mating loop caused by a sire mated to genetically related females. (c) A mating loop caused by a pair of females
being mated to the same sire and then subsequently to a different sire. (d) A mating loop caused by full sibs.

fined as the property of a meiosis that specifies whether
the allele transmitted from the parent (i) to the off-
spring (k) was inherited from the grandsire or the
granddam. The GPO of meiosis ki is represented by hki

and is coded as 1 if the allele is of grandpaternal origin
and 0 if it is of grandmaternal origin. It is functionally
equivalent to an element of the “inheritance vector”
described by Lander and Green (1987). The GPO proba-
bility of meiosis ki, H(ki), is defined as the probability
that hki = 1, or the probability of grandpaternal origin.

In Figure 2, assuming that phenotypes are observed
without error, i inherited allele 2 from his dam, d, and
allele 1 from his sire, s. Therefore, hmi = 0 and hpi = 1,
which implies that m and p received different alleles
from i. It is not possible to determine with certainty
which allele k inherited from i. Therefore, we are inter-
ested in the probability distribution of hki. The probabil-
ity that hki = 1 is the probability of grandpaternal origin.
In this example it is also the probability that k inherited
the same allele as p and a different allele than m.

The GPO probabilities could be computed from geno-
type probabilities using the rules of Mendelian inheri-
tance. However, it is easier to compute the GPO proba-
bilities directly from parental prior distributions and
progeny likelihoods. The GPO probability of meiosis
ki, H(ki), is the scalar probability that meiosis ki is of
grandpaternal origin (hki = 1), conditional on all of the
marker phenotypes. It is calculated as

H(ki) = cH(ki)−1 � P1(ki)′ � L(ki) [5]
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where

cH(ki) = P0(ki)′ � L(ki) + P1(ki)′ � L(ki) = P(ki)′ � L(ki)

The GPO probability, H(ki), summarizes the informa-
tion about hki that is contained in marker data through-
out the pedigree. For example, in Figure 2, H(ki) =
0.71 is the probability that k inherited the allele that
i inherited from s.

Computation of GPO probabilities requires the joint
parental distribution of the allele transmitted through
the meiosis and the GPO of the meiosis. The vectors
P0(ki) and P1(ki) in [3] are the columns of the A × 2
matrix, [P0(ki) P1(ki)], which contains the joint paren-
tal distribution for meiosis ki. Its elements contain the
joint probabilities of the allele transmitted in ki with
the GPO of ki conditional on all marker phenotypes
that are connected to k through i and they sum to one.
For example, element 3 of P1(ki) contains the joint
probability that k inherited the allele that i inherited
from its sire and that it was the third allele. The mar-
ginal parental prior distribution, with respect to only
the allele transmitted, P(ki), is obtained by summing
the two columns. Summing the expressions for P0(ki)
and P1(ki) yields the expression for P(ki) in Thallman
et al. (2001) and, consequently, the scaling factor, cP(ki),
is identical.

The scalars, P0(ki)′ � L(ki) and P1(ki)′ � L(ki), are
proportional to the likelihoods of all the marker pheno-
types conditional on hki = 0 or 1, respectively. By Bayes

Figure 2. Grandparental origin of three meioses from
the same parent (i) in a pedigree with incomplete marker
data. Marker phenotypes are indicated to the right of the
individuals. Assuming marker phenotypes are observed
without error, meioses mi and pi can be inferred to be of
grandmaternal (hmi = 0) and grandpaternal (hpi = 1) origin,
respectively. The grandparental origin of meiosis ki can
not be inferred unambiguously, but the probability of
grandpaternal origin (H(ki) = 0.71) can be computed by
allelic peeling.

theorem, using a prior probability of 0.5 for each of the
two states of hki, the probability of hki = 1 conditional
on all phenotypes is the ratio of P1(ki)′ � L(ki) to its
sum with P0(ki)′ � L(ki), yielding the expression in [5].

Incomplete Penetrance

Following Lincoln and Lander (1992), we refer to
marker data as phenotypes to emphasize that they are
observed with a small degree of error. The penetrance
function, M(i), is used to relate the genotype (which is
unobservable) to the phenotype (assumed herein to be
marker data). Specifically, it is the probability distribu-
tion of the phenotype conditional on each possible geno-
type at the locus (i.e., the genetic model). Many compu-
tational approaches to analyzing marker data (e.g.,
Lander and Green [1987]) are dependent on the use
of a complete penetrance model, which assumes that
marker phenotypes are observed without error. Such
methods require error-free marker data.

An incomplete penetrance model incorporates the
probability of errors in marker phenotypes and is there-
fore a more accurate representation of real marker data.
An incomplete penetrance model allows the detection
of likely scoring errors. Errors in marker data can occur
as a result of misinterpretation of electrophoresis re-
sults or from mislabeling of samples from collection to
extraction to loading on gels.

The simplest form of the penetrance function that
allows for errors in marker data assigns a probability
of 1 − ε to the phenotype that is consistent with the
genotype and distributes the probability of an error
(ε) uniformly among all other phenotypes (Ehm et al.,
1996). For a codominant marker with A alleles, εu =

ε
A(A + 1)/2 − 1 is the uniform probability of each errone-

ous phenotype.
The penetrance matrix for individual i, M(i), is an A

× A matrix with elements corresponding to the possible
genotypes of i (with rows and columns corresponding
to the allele i inherited from its dam and sire, respec-
tively). Under the uniform error model, each element
takes the value 1 − ε or εu, depending on whether the
genotype corresponding to the element is consistent or
inconsistent, respectively, with the phenotype of i. For
example, individual y in Figure 3 has a phenotype of
1/2, so assuming A = 3 and ε = 0.01,

M(y) =






0.002 0.990 0.002
0.990 0.002 0.002
0.002 0.002 0.002






If individual i does not have a phenotype, then M(i)
is simply a matrix of ones, equivalent to eliminating
the term M(i) from Eq. [1] to [4]. The elements of this
matrix of likelihoods do not sum to one, but instead
the sum of the penetrance matrices over all possible
phenotypes is a matrix filled with ones.
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Figure 3. Example pedigree with a full-sib loop.

Iterative Algorithm

Thallman et al. (2001) described a recursive algorithm
(allelic peeling) for computing genotype distributions
from parental prior distributions and progeny likeli-
hoods. Unfortunately, in complex pedigrees, it often hap-
pens that several of the quantities to be computed by
the recursive formulas depend on one another, so neither
can be computed without first computing the other. This
impasse occurs if the pedigree contains a loop and causes
the recursive algorithm to fail. Van Arendonk et al.
(1989) showed that an approximate solution can be ob-
tained by choosing a starting value for one of the quanti-
ties and iterating back and forth between them until they
converge. This approach was referred to as “iterative
peeling” by Janss et al. (1995). We will describe the
application of the iterative algorithm to complex pedi-
grees using the formulas for allelic peeling.

In iterative allelic peeling, the parental prior distribu-
tions and progeny likelihoods are properties of meioses
rather than of individuals. Therefore, a list of meioses
is constructed, ordered by the birth date of the parent,
so that sibs are adjacent to one another. Progeny likeli-
hoods are computed, beginning with the youngest meio-
sis and proceeding to the oldest, using the population
allele frequencies in place of the parental prior distribu-
tion. Then, parental prior distributions are computed,
beginning with the oldest meiosis and proceeding to the
youngest, using the progeny likelihoods just computed.
In the subsequent iterations, the computations alternate
between parental prior distributions and progeny likeli-
hoods, each computed in terms of the most recent up-
dates of the other.

Progeny likelihoods are computed from youngest to
oldest because they are functions of the progeny likeli-
hoods of the progeny as shown in [1] and [2]. The meioses

When computing parental prior distributions, the meioses are processed by progeny within parent i, accumulat-
ing the multiple product over all progeny of i. However, before leaving i, the progeny are processed sequentially
a second time in which the multiple product excluding progeny k is computed for each progeny by

Π°
t�progeny(i)

t≠k

[0.5 � L(ti) � 1′ + 0.5 � 1 � L(ti)′] =
Π°

t�progeny(i)
[0.5 � L(ti) � 1′ + 0.5 � 1 � L(ti)′]

0.5 � La(ki) � 1′ + 0.5 � 1 � La(ki)′ [6]

are processed by progeny within parent, accumulating
the multiple product. When the last progeny of individ-
ual i has been processed, the multiple product is used
to compute L(is) and L(id), which are stored in an array
of progeny likelihoods for random access retrieval. At
this point, the multiple product is no longer needed,
so there is no need to store this matrix (which has A2

elements) for each individual in the pedigree.
Parental prior distributions are computed from oldest

to youngest because they are functions of the parental
prior distributions of the parents as shown in [3]. When
a parent i of individual k is not included in the pedigree,
then P(ki) is equal to the vector of population allele
frequencies, �, which has length A.

Then the progeny likelihoods are recalculated using
the parental prior distributions just calculated. Iteration
continues, always using the most recently calculated pa-
rental prior distributions and progeny likelihoods, until
the changes in parental prior probabilities from one
round to the next are negligible.

Finally, the genotype distribution and GPO probabil-
ity for each individual and meiosis in the pedigree are
computed using [4] and [5], respectively. For a marker
with many alleles, it is often adequate to store the GPO
probabilities and some summary statistics of G(i) and
discard the full genotypic distributions to save space.
Summary statistics that have proven useful are the most
likely ordered genotype, the probability of the most likely
ordered and unordered genotypes, the total probability
of heterozygous genotypes, and the probability of a scor-
ing error.

Also, it is generally useful to permanently store the
values of P(ki), P1(ki), and L(ki) at convergence for each
meiosis in the pedigree. For loci with many alleles, they
require much less storage than the full genotype distri-
butions, and when these values are available it is a
trivial process to compute the full genotypic or GPO
distribution of any individual on demand.

Computationally Efficient Form
of the Multiple Product over Sibs

The expression for the parental prior distribution of
the meiosis from parent i to progeny k in [3] includes a
multiple product over all of the sibs of k through parent
i. Computing this multiple product for each meiosis in
the pedigree is the most computationally demanding op-
eration in the peeling algorithm, especially in livestock
pedigrees, where sires often have many progeny. In some
cases, the efficiency of computing the multiple product
can be improved considerably.
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where the division of matrices is elementwise. In other
words, the multiple product over the progeny of i exclud-
ing k is computed by dividing the multiple product over
all the progeny of i by k’s contribution to it. Next, the
parental prior distribution of meiosis ki is computed,
which is the only term that requires the multiple prod-
uct excluding k. Then, the next progeny of i is processed.
Therefore, only one instance of the multiple product
over all progeny and one instance of the multiple prod-
uct excluding a progeny need be stored at a time.

The heuristic form on the left-hand side of [6] is more
descriptive of the statistical properties than the compu-
tational form on the right-hand side, and if i has only
a few progeny there is little difference in computational
efficiency. However, if i has 100 progeny, then it is much
more efficient to compute the multiple product once and
perform the division in [6] 100 times than to compute
100 different multiple products of 99 progeny each, as
is indicated by [3].

Equation [6] provides computational savings, but it
does require that all elements of the matrix in the de-
nominator be greater than zero. This precludes using
it with the complete penetrance model. With the incom-
plete penetrance model described herein, all genotypes
are possible and therefore all elements of the denomina-
tor are theoretically greater than zero. However, if k
has approximately 100 or more progeny, it is possible
for an element of L(ki) to be so small (< 10−307) that it
underflows to zero in double precision floating point
arithmetic. If this occurs, the form in [3] must be used
to compute P(ki).

Results and Discussion

The term peeling originates from the idea of removing
terminal members of a pedigree (individuals that are
connected to the pedigree by only one meiosis) by trans-
ferring the information from them to their parent or
progeny and then repeating the process until there are
no remaining members. Iterative peeling (van Aren-
donk et al., 1989; Janss et al., 1995) transfers informa-
tion between parents and progeny but does not remove
them from the pedigree in the process. Allelic peeling
has computational advantages relative to previous peel-
ing algorithms (Thallman et al., 2001).

Iterative allelic peeling combines the advantages of
iterative peeling and allelic peeling to address several
problems with the application of marker information
to livestock pedigrees. Many of the markers available
are multi-allelic microsatellites, the pedigrees are large
and contain many loops, and there are inevitable errors
in marker data.

Iterative allelic peeling also provides a means to sum-
marize information about segregation in the form of
grandparental origin probabilities. These probabilities
can be used as regression coefficients in within-family
QTL analyses. However, they can also be used to quan-
titatively account for the relationships between families
in complex pedigrees. This will be especially important

for the application of MAS to livestock populations.
Grandparental origin probabilities will be useful for
summarizing and transmitting segregation informa-
tion from one locus to the next in the analysis of multiple
linked loci.

Numerical Example

The iterative allelic peeling method is an approxima-
tion because it ignores loops, as does an iterative geno-
typic peeling method suggested by van Arendonk et al.
(1989). The extent of the approximation is unknown;
however, we show through an example that the approxi-
mation can be trivial and we offer additional justifica-
tion for livestock populations.

Table 1 illustrates the algorithm for iterative allelic
peeling of the small looped pedigree in Figure 3. The
parental prior distributions and progeny likelihoods
were computed by iterating on Eq. [1] through [3] as
described above. For example, in the first row of Table
1, L(zx) is computed by substituting z for i and x for s
in Eq. [2]. Because z has no progeny, the multiple prod-
uct is eliminated from [2] so L(zx) is equal to M(z)′ �
P(zw) times the scaling factor. The scaling factor is �′
� M(z)′ � P(zw). In the first round of iteration, � is
substituted for P(zw). The expressions for L(yx), L(zw),
and L(yw) are similar. In the expressions for L(wv),
P(wv), P(yx), and P(zx), the parental prior terms are
all equal to � in all iterations because v and x are
founders and therefore, by definition, the parental prior
distributions for the meioses from their parents to them
are the population allele frequencies. The same is true
of the maternal meiosis to w in the expressions for
P(yw) and P(zw). The penetrance matrices for individu-
als without phenotypes are omitted from the formulas.

Genotype distributions and GPO probabilities com-
puted from the parental prior distributions and progeny
likelihoods at convergence are presented in Table 2.
Exact genotype distributions and GPO probabilities
were computed directly by summing over the entire
joint genotypic distribution of the same pedigree. These
exact distributions and the largest absolute differences
between iterative allelic peeling and them are pre-
sented in Table 2.

Approximation Due to Loops

The example in Figure 3 was designed to accentuate
differences due to loops between iterative allelic peeling
and the exact method for illustrative purposes. How-
ever, iterative allelic peeling produces nearly exact re-
sults for many configurations encountered in real data.
In experimental data, it is typical for marker data to
be collected on one or both of the parents. The depen-
dency in Figure 3 exists because marker data were
collected on neither parent. Table 3 contains a compari-
son of iterative allelic peeling with the exact method
for the pedigree in Figure 3 modified by adding a pheno-
type of 1/3 to parent x. This additional data reduced
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Table 1. The iterative allelic peeling algorithma for the example pedigree in Figure 3

First round Convergence

Scaling Scaling
Term Eq. Calculation omitting scaling factorb factor Result factor Result

L(zx) [2] M(z)′ � P(zw) 0.222 0.094




1.495
0.009
1.495











1.213
0.021
1.766






L(yx) [2] M(y)′ � P(yw) 0.222 0.204




1.495
1.495
0.009











2.392
0.599
0.010






L(zw) [1] M(z) � P(zx) 0.222 0.244




1.495
0.009
1.495











0.691
0.008
2.301






L(yw) [1] M(y) � P(yz) 0.222 0.180




1.495
1.495
0.009











0.948
2.041
0.011






L(wv) [2] {[0.5 � L(yw) � 1′ + 0.5 � 1 � L(yw)′] 0.877 0.616
° [0.5 � L(zw) � 1′ + 0.5 � 1 � L(zw)′]} � �






1.705
0.648
0.648











1.025
0.932
1.043






P(wv) [3] 0.5 � � ° [M(v) � �] + 0.5 � � ° [M(v)′ � �] 0.112 0.112




0.006
0.988
0.006











0.006
0.988
0.006






P(yw) [3] 0.5 � � ° [[0.5 � L(zw) � 1′ + 0.5 � 1 � L(zw)′] � P(wv)] 0.513 0.513
+ 0.5 � P(wv) ° [[0.5 � L(zw) � 1′ + 0.5 � 1 � L(zw)′]′ � �]






0.254
0.491
0.254











0.121
0.491
0.388






P(zw) [3] 0.5 � � ° [[0.5 � L(yw) � 1′ + 0.5 � 1 � L(yw)′] � P(wv)] 1.243 1.511
+ 0.5 � P(wv) ° [[0.5 � L(yw) � 1′ + 0.5 � 1 � L(yw)′]′ � �]






0.203
0.696
0.102











0.166
0.721
0.113






P(yx) [3] 0.5 � � ° [[0.5 � L(zx) � 1′ + 0.5 � 1 � L(zx)′] � �] 1 1
+ 0.5 � � ° [[0.5 � L(zx) � 1′ + 0.5 � 1 � L(zx)′]′ � �]






0.416
0.168
0.416











0.369
0.170
0.461






P(zx) [3] 0.5 � � ° [[0.5 � L(yx) � 1′ + 0.5 � 1 � L(yx)′] � �] 1 1
+ 0.5 � � ° [[0.5 � L(yx) � 1′ + 0.5 � 1 � L(yx)′]′ � �]






0.416
0.416
0.168











0.566
0.266
0.168






aThe terms in the first column are computed using the kernels of the formulas (which are instances of the equations in the second column).
The scaling factors are then computed by summing the elements (for parental prior distributions) or multiplying by the vector of allele
frequencies (for progency likelihoods) and the computed values are divided by the scaling factors to obtain the results. Computations proceed
from the top of the table to the bottom in each iteration. The results for the first iteration and at covergence are presented. When computing
the progeny likelihoods in the first iteration, the parental prior distributions are replaced by �; thereafter all required quantities are available
as indicated in the expressions.

bBased on � =






0.333
0.333
0.333





, M(v) =






0.002 0.002 0.002
0.002 0.990 0.002
0.002 0.002 0.002





, M(y) =






0.002 0.990 0.002
0.990 0.002 0.002
0.002 0.002 0.002





, and M(z) =






0.002 0.002 0.990
0.002 0.002 0.002
0.990 0.002 0.002





, corresponding to an error

rate of ε = 0.01.

the dependency between the parents, w and x. Using
an incomplete penetrance model with the same error
rate as in Table 2, the greatest difference in genotype
or GPO probabilities between iterative allelic peeling
and the exact method was 3 × 10−4. There was no differ-
ence when a complete penetrance model was used.

As shown in the example, full-sib loops can produce
a dependency between the genotypes of the two parents,
resulting in approximate genotypic and GPO distribu-

tions. However, for a dependency to exist between the
genotypes of parents, each of the parental genotypes
must have at least two plausible states conditional on
all the marker data. Otherwise, the joint distribution
of the two genotypes would be equal to the product of
the two marginal genotype distributions, implying that
the two genotypes were independent. Furthermore, the
likelihood of full sibs does not depend on the order of
the parental genotypes. Therefore, full sibs do not cause
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allelic peeling to differ from exact methods when the
unordered genotype of either parent is unambiguous.

For example, in Table 3, the ordered genotype of x is
ambiguous (it is equally likely to be [1,3] or [3,1]), but

Table 2. Genotype and grandparental origin distributions for the example in Figure 3

Iterativeb

Term Calculation omitting scaling factora allelic peeling Exactc δ d

G(v) [� � �′] ° M(v) ° [0.5 � L(wv) � 1′ + 0.5 � 1 � L(wv)′] 0.001




0.002 0.002 0.002
0.002 0.983 0.002
0.002 0.002 0.002











0.003 0.002 0.002
0.002 0.982 0.002
0.002 0.002 0.002






G(w) [� � P(wv)′] ° [0.5 � L(yw) � 1′ + 0.5 � 1 � L(yw)′] 0.032
° [0.5 � L(zw) � 1′ + 0.5 � 1 � L(zw)′]






0.002 0.299 0.002
0.002 0.010 0.004
0.002 0.678 0.000











0.004 0.331 0.002
0.002 0.008 0.004
0.002 0.647 0.000






G(x) [� � �′] ° [0.5 � L(yx) � 1′ + 0.5 � 1 � L(yx)′] 0.054
° [0.5 � L(zx) � 1′ + 0.5 � 1 � L(zx)′]






0.326 0.104 0.201
0.104 0.001 0.031
0.201 0.031 0.002











0.328 0.085 0.165
0.085 0.001 0.085
0.165 0.085 0.001






G(y) [P(yw) � P(yx)′] ° M(y) 0.071




0.000 0.102 0.001
0.890 0.001 0.002
0.001 0.001 0.002











0.000 0.173 0.001
0.821 0.001 0.002
0.001 0.000 0.000






G(z) [P(zw) � P(zx)′] ° M(z) 0.034




0.002 0.001 0.298
0.009 0.004 0.003
0.683 0.001 0.000











0.002 0.002 0.332
0.008 0.003 0.002
0.650 0.000 0.000






P0(yw) 0.5 � � ° [[0.5 � L(zw) � 1′ + 0.5 � 1 � L(zw)′] � P(wv)] N/A N/A




0.116
0.006
0.378






P1(yw) 0.5 � P(wv) ° [[0.5 � L(zw) � 1′ + 0.5 � 1 � L(zw)′]′ � �] N/A N/A




0.005
0.485
0.010






H(yw)e 0.888 0.820 0.068P1(yw)′ � L(yw)
P0(yw)′ � L(yw) + P1(yw)′ � L(yw)

P0(zw) 0.5 � � ° [[0.5 � L(yw) � 1′ + 0.5 � 1 � L(yw)′] � P(wv)] N/A N/A




0.164
0.224
0.112






P1(zw) 0.5 � P(wv) ° [[0.5 � L(yw) � 1′ + 0.5 � 1 � L(yw)′]′ � �] N/A N/A




0.002
0.497
0.001






H(zw) 0.020 0.020 0.000P1(zw)′ � L(zw)
P0(zw)′ � L(zw) + P1(zw)′ � L(zw)

aThe terms in the first column are computed using the kernels of the formulas (which are instances of [3] to [5]). Scaling factors are then
computed by summing the elements and the kernels are divided by the scaling factors to obtain the results. The kernels of the expressions
for P0(ki) and P1(ki) are scaled by the scaling factors for P(ki) listed in Table 1 so that their joint sum is one.

bComputed using the expressions in the previous column, the results at convergence in Table 1, and � =






0.333
0.333
0.333





, M(v) =






0.002 0.002 0.002
0.002 0.990 0.002
0.002 0.002 0.002





, M(y) =






0.002 0.990 0.002
0.990 0.002 0.002
0.002 0.002 0.002





, and M(z) =






0.002 0.002 0.990
0.002 0.002 0.002
0.990 0.002 0.002





, corresponding to an error rate of ε = 0.01.

cExact results were obtained by summing over the entire joint genotypic distribution of the pedigree. Because this method does not depend
on partitioning the pedigree into subsets, parental prior distributions were not computed.

dLargest absolute difference between corresponding elements of the result from iterative allelic peeling and the exact result.
eResults for H(wv), H(yx), and H(zx) are not presented because the parent in each of these meioses is a founder so there is no basis to

distinguish between the grandparents. Consequently, P1(wv) = P0(wv) = 0.5 � P(wv) and therefore H(wv) = 0.5 is uninformative by definition.
The same is true of H(yx) and H(zx).

the unordered genotype of x is certain to contain alleles
1 and 3 under complete penetrance and almost certain
to contain those alleles under incomplete penetrance.
Consequently, the dependency is reduced to the extent
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Table 3. Genotype and grandparental origin distributions for the example in Figure 3
modified to include a phenotype of 1/3 for individual x

Incomplete penetrancea Complete penetranceb

Interative Difference relative Iterative Difference relative
Term allelic peeling to exactc allelic peeling to exactc

G(v) 9 × 10−7 0




0.001 0.002 0.001
0.002 0.990 0.002
0.001 0.002 0.001











0 0 0
0 1 0
0 0 0






G(w) 2 × 10−5 0




0.000 0.492 0.000
0.003 0.008 0.003
0.000 0.494 0.000











0 0.5 0
0 0 0
0 0.5 0






G(x) 3 × 10−4 0




0.002 0.001 0.498
0.001 0.000 0.000
0.498 0.000 0.000











0 0 0.5
0 0 0
0.5 0 0






G(y) 1 × 10−5 0




0.001 0.001 0.001
0.993 0.000 0.002
0.001 0.000 0.001











0 0 0
1 0 0
0 0 0






G(z) 2 × 10−5 0




0.001 0.000 0.492
0.006 0.000 0.006
0.494 0.000 0.001











0 0 0.5
0 0 0
0.5 0 0






H(yw) 0.986 2 × 10−5 1 0

H(zw) 0.014 9 × 10−6 0 0

aComputed using � =






0.333
0.333
0.333





, M(v) =






0.002 0.002 0.002
0.002 0.990 0.002
0.002 0.002 0.002





, M(x) =






0.002 0.002 0.990
0.002 0.002 0.002
0.990 0.002 0.002





, M(y) =






0.002 0.990 0.002
0.990 0.002 0.002
0.002 0.002 0.002





, and M(z) =






0.002 0.002 0.990
0.002 0.002 0.002
0.990 0.002 0.002





, corresponding to an error rate of ε = 0.01.

bComputed using � =






0.333
0.333
0.333





, M(v) =






0 0 0
0 1 0
0 0 0





, M(x) =






0 0 1
0 0 0
1 0 0






, M(y) =






0 1 0
1 0 0
0 0 0





, and M(z) =






0 0 1
0 0 0
1 0 0





,

corresponding to a compete penetrance model (ε = 0).
cLargest absolute difference between corresponding elements of the result from iterative allelic peeling

and the exact result, obtained by summing over the entire joint genotypic distribution of the pedigree.

that iterative allelic peeling yields exact or almost ex-
act results.

The dependency in Figure 3 could also have been
eliminated by adding the phenotype of w, additional
full sibs or half sibs, or additional phenotypes connected
to the parents through the grandparents. Furthermore,
there are a variety of circumstances in which allelic
peeling yields exact results despite dependencies be-
tween unordered parental genotypes. For example, al-
lelic peeling yields exact results unless at least two of
the full sibs have ambiguous ordered genotypes. Al-
though full sibs may cause iterative allelic peeling to
yield approximate results as in Table 2, this occurs only
in special cases. In most experimental populations used
in linkage analysis and QTL mapping, marker pheno-
types are collected on the parents and therefore the
degree of approximation due to full sibs is trivial.

Other types of loops can also cause approximations
in iterative peeling because of dependencies among the

genotypes of the individuals in the loops. In order for
a loop to cause approximation, the genotype of each
individual in the loop must be dependent on the geno-
types of the rest of the individuals in the loop. One
individual with an unambiguous ordered genotype is
sufficient to “break” the loop. Other, less stringent con-
ditions may also be sufficient to break loops.

In many livestock pedigrees, most of the sires have
a sufficient number of progeny that their genotypes are
known unambiguously. Because every loop includes at
least one sire and most loops are longer than those in
the example pedigree, the approximation due to loops
may cause little loss of information in most livestock
pedigrees.

In general, the greatest degree of approximation oc-
curs in parts of the pedigree in which genotypic distri-
butions are ambiguous because there is relatively little
marker information. Such parts of the pedigree would
usually contribute little to QTL mapping or linkage
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analysis even if it was feasible to do an exact analysis.
However, adding marker data to these parts of the pedi-
gree can both reduce the degree of approximation and
increase the amount of information available.

The approximation for loops in livestock pedigrees
could be improved by first identifying which loops have
important dependencies, and then applying better ap-
proximations locally to those loops. The local approxi-
mations could include the cut-extended pedigree
method of Wang et al. (1996) or conditioning on the
genotypes of a sufficient number of individuals to divide
the loop into independent subsets, as in Cannings et
al. (1978).

Iterative genotypic peeling (Janss et al., 1995; Kerr
and Kinghorn, 1996) handles full-sib loops exactly by
summing over the genotypes of both parents, but at
substantial computational cost. Other types of loops are
approximated the same by iterative genotypic peeling
and iterative allelic peeling.

Convergence

Iterative allelic peeling generally converges rapidly
but depends on the degree of independence in loops. For
Tables 1 and 2, 20 iterations were performed, although
parental prior probabilities changed by less than 10−3

and 10−5 relative to the previous round after the sixth
and tenth iterations, respectively. However, in Table
3, convergence occurred much faster because the depen-
dency in the loop was reduced or eliminated. With in-
complete penetrance, parental prior probabilities
changed by less than 10−3 and 10−12 relative to the previ-
ous round after the third and sixth iterations, respec-
tively, and there were no changes after the second itera-
tion when the complete penetrance model was used.
In a pedigree with no loops, iterative allelic peeling
converges to exact values in a finite number of iter-
ations.

Incomplete Penetrance

Some computational approaches use a complete pene-
trance model to enhance computational efficiency by
inferring genotypes or limiting the range of possible
genotypes of some individuals, assuming no errors in
the marker data. The incomplete penetrance model
would greatly increase the computational cost of such
methods. However, in allelic peeling, the incomplete
penetrance model is actually more computationally ef-
ficient because [6] can be used with the incomplete pen-
etrance model, but not with complete penetrance. This
is especially important in livestock pedigrees in which
sires often have a large number of progeny.

The incomplete penetrance function also solves some
practical problems that arise when analyzing large,
complex pedigrees with incomplete data. The complete
penetrance model cannot be used to analyze data that
contain “non-Mendelian inheritances” (configurations
of phenotypes that are inconsistent with the laws of

genetics). These often occur due to marker data errors.
Finding the error responsible for a non-Mendelian in-
heritance can be very tedious in a complex pedigree if
complete penetrance is used, but is much easier with
incomplete penetrance because the analysis can be per-
formed in spite of the errors and the probability of a
data error is computed for each phenotype.

The probability of a scoring error for individual i,
PErr(i), is computed as the sum of the probabilities of
genotypes that are inconsistent with the phenotype of
i. For example, in Table 2,

G(y) =






0.000 0.173 0.001
0.821 0.001 0.002
0.001 0.000 0.000





.

and the phenotype of y is 1/2. Therefore,

PErr(i) = .000 + .001 + .001 + .002 + .001 + .000 + .000
= .005.

For simplicity, this paper focuses only on codominant
autosomal marker loci. However, it is not difficult to
adapt the penetrance function to handle dominant or
sex-linked markers or discrete or continuous pheno-
types. In each case, the penetrance matrix consists of
the likelihood of the observed phenotype conditional on
each of the possible genotypes at the locus.

The method of allelic peeling can be applied to looped
pedigrees through an iterative algorithm. The resulting
probabilities are approximate, but when parents have
marker phenotypes, the approximation is minimal. An
incomplete penetrance model that accounts for errors
in marker data and allows computation of the probabili-
ties of such errors is very useful in complex pedigrees
with marker data collected on subsets of the pedigree.
The incomplete penetrance function allows greater
computational efficiency relative to complete pene-
trance.

Grandparental origin probabilities condense infor-
mation from genetic markers into a set of statistics that
provides most of the relevant information needed to
map QTL based on patterns of genetic segregation. We
show for the first time that GPO probabilities can be
computed directly as part of a peeling algorithm.

Implications

Iterative allelic peeling is a computationally efficient
method for calculating approximate genotype probabili-
ties of loci with many alleles in large pedigrees of arbi-
trary structure. It also allows calculation of grandpa-
rental origin probabilities that indicate the pattern of
segregation through the pedigree. Iterative allelic peel-
ing extends the size and complexity of livestock pedi-
grees that can be used for the detection of quantitative
trait loci and for marker-assisted selection. The method
described herein is a preliminary step leading toward
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an analysis of multiple, linked markers in large, com-
plex livestock pedigrees.
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